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RELATIVE SPACECRAFT MOTION:  
 A HAMILTONIAN APPROACH TO ECCENTRICITY 

PERTURBATIONS* 
 

Egemen Kolemen† & N. Jeremy Kasdin‡ 
 

 This paper uses a Hamiltonian approach to find the effects of eccentricity 
perturbations on the linearized relative motion of spacecrafts described by 
Hill’s equations. Perturbations to the constant canonical elements, obtained by 
a Hamiltonian treatment of the linearized relative motion, are considered. To 
begin with, the relative motion is described in an eccentric reference frame.  
Subsequently, the perturbing Hamiltonian is found in terms of the eccentricity. 
Next, a perturbation analysis is carried out via a variation of parameters 
procedure, generating a closed-form solution for variations about the eccentric 
reference orbit. Finally, using the orbit-averaged equations, the eccentricity 
effects on boundedness are discussed. 

 
INTRODUCTION 
 

Current mission plans for spacecraft formation flying have highlighted the need 
for improved dynamical formulations of the relative motion of spacecraft. The 
Clohessy-Wiltshire (C-W) equations were the first relative motion equations for the 
rendezvous of spacecrafts1. Linearizing the relative motion around a circular reference 
frame, the C-W equations express the relative motion in terms of Cartesian initial 
conditions. A major drawback of the C-W formulation is the difficulty solving for the 
motion under arbitrary perturbations. To overcome this problem, a substantial number 
of studies have examined the concepts for modeling motion under several 
perturbations2,3. 
 

One alternative approach utilizes inertial orbital elements to define the motion in 
terms of six constants of motion4. In Kasdin & Gurfil5, closed form solutions for the 
relative motion are obtained to arbitrary order in the orbital elements. Nevertheless, this 
is still an inertial description of the motion.  
 

In an alternative approach, Kasdin & Gurfil used a Hamiltonian formalism to 
derive a closed form solution for the motion relative to a circular orbit in terms of six 
canonical constants of the motion. Variational equations for these constants under 
conservative perturbations are then obtained via Hamilton's equations on the 
perturbation Hamiltonian.  One appealing feature of this approach is that the motion is 
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described entirely in terms of relative variables.  No inertial measurements or references 
are necessary. 
 

This paper uses this same formalism to examine the effects of the eccentricity of 
the reference orbit on the relative motion. First, the basic derivation of the canonical 
equations for relative motion about a circular reference orbit are summarized, including 
some recent modifications to make the canonical variables more physically sound. Next, 
the same procedure is used to find the Hamiltonian for motion relative to an eccentric 
reference orbit. Then, using a perturbation analysis for the Hamiltonian, the variational 
equations for the canonical elements under small eccentricity are obtained. Lastly, the 
effect of eccentricity on boundedness and periodicity for different initial conditions are 
discussed. 
 
CANONICAL ANALYSIS OF RELATIVE MOTION IN CIRCULAR 
REFERENCE FRAME 
 

Kasdin & Gurfil5 used a circular rotating Euler-Hill reference frame,ℜ , shown 
in Figure 1, with mean motion 3/ an µ= , where µ is the gravitational constant and a 
is the radius of the circular reference frame, to illustrate the Hamiltonian approach. 

 
Figure 1   Relative motion in rotating Euler-Hill reference frame 

 
A complete Lagrangian, using the gravitational potential energy, can be 

formulated for motion in relative motion frameℜ . The linearized equations of motion 
are found by first forming a low order Lagrangian via a 2nd order expansion of the 
potential in relative position, ρ. This Lagrangian is normalized by the reference orbit 
rate, n, and the reference orbit radius, a, and then used in a Legendre transformation to 
find the low-order Hamiltonian: 
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By solving the Hamilton-Jacobi equation, we find new canonical constants of 
the motion, termed “epicyclic” elements: 
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Defining a new action variable,
2

3
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Modifying the generating function accordingly, the equations for the new action-
angle variables are obtained5: 
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 Dropping the primes for convenience, the relative motion in Cartesian 
coordinates can be expressed in terms of the new canonical elements in the following 
way: 
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In this form, it is apparent that 3α  and Q  are responsible for in-plane secular 
drift. In their absence, the in-plane motion is periodic, with a 2:1 ellipse.  
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RELATIVE MOTION IN ECCENTRIC REFERENCE FRAME 
 

To allow for a slightly eccentric reference orbit, we need a reference frame,ℜ′ , 
rotating with the angular velocity of a Keplerian orbit, , which is the time derivative 
of true anomaly(see Figure 2). 

θ&

  

 
Figure 2    Relative motion in rotating ℜ′ reference frame 

 
Employing the coordinate system ℜ′ and using a new variable, 1rrc

v= , the 
velocity of the follower can be written as:  
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Using the gravitational potential energy up to 2nd order in ρ, the potential energy 
is: 
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            Normalizing rates by the mean orbit rate, n, and relative distances by the semi-
major axis, a, the low-order Lagrangian is obtained as follows: 
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The Legendre transformation, LpqH ii
i

−∑= & , gives us the complete 

Hamiltonian: 
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θ and rc are not independent variables, but rather predetermined functions of 
time and initial conditions. Thus, px’, py’, pz’ are the only canonical momenta defined as: 
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ANALYSIS OF THE ECCENTRICITY PERTURBATIONS 
 

The Hamilton-Jacobi equation for this system is unsolvable. However, when the 
eccentricity is small, the eccentric Hamiltonian approaches the circular Hamiltonian. As 
a result, we can conceive of the eccentric motion as a perturbation of the motion relative 
to a circular orbit of the same period. In this section, the eccentricity perturbation to the 
circular Hamiltonian is considered, and the Canonical Perturbation Theory is used to 
find the variations of the action-angle variables. The perturbing Hamiltonian, H(1), is by 
definition: 
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Hamilton’s equations on the perturbing Hamiltonian give the evolution of the 

action-angle variables in time6: 
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By substituting for x, y, z, px, py and pz from Eqs. (6) and (7) and then applying 
Hamilton’s equations, it is possible to find the variation equations. Our aim is to find the 
evolution of the system across time, and as a result, the time dependence of rc and θ 
should be investigated before we proceed: 
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where E, the eccentric anomaly, is obtained from the Kepler’s Equation: 
EeEtnM sin)( −=−= τ                                            (17) 

Here τ , the time of passage through the pericenter, is assumed to be zero, since 
it does not alter the problem’s characteristics. 
 

Kepler’s Equation cannot be solved explicitly for time. We thus adopt the 
Fourier-Bessel series from Battin7, and express rc and θ in terms of eccentricity and 
time as follows: 
 

∑ ∑
∞

=

∞

−∞=

+
























 −−
−+=

1

||
2

)sin(11)(12
k n

nk

kM
e

ekeJn
k

Mθ                  (18) 

 ∑
∞

=

−+=
1

2

2

)sin()(12
2

1
k

k
c kM

de
kedJ

k
eer                                  (19) 

 
ORBIT-AVERAGED PERTURBATION ANALYSIS 
 

To find an expression for the variation of parameters caused by the eccentric 
reference orbit, we substitute for rc and θ  from Eqs. (18) and (19) in the expression for 
H(1) in Eq. (13), and we expand up to second order in e: 
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 An expression for H(1) in terms of action-angle variables can be obtained by 
substituting for the Cartesian coordinates and momenta from Eqs. (6) and (7) into Eq. 
(20). 
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Because the long-term and secular behavior of the orbit is of great importance 
for many applications, this paper analyzes the orbit-averaged equations. In the following 
sections, the first-order and the second-order eccentricity perturbation effects on the 
orbit are analyzed in turn. 
  
First-Order Averaging 
 

By applying Hamilton’s equations and averaging the first-order terms, the 
following differential equations for the variation of mean action-angle variables are 
obtained: 
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In the above equations, 1α  defines the size of the in-plane motion, and 1β  is the 
associated phase angle. 2α  and 2β define the out-of-plane motion. 3α and  are the 
drifts in the x and y directions, respectively. 

3Q

 
Examining these equations, the following observations can be made: 
 

1. As expected, the first-order eccentricity perturbation does not lead to out-of-
plane motion ( 02 =α& , 02 =β& ). 

 
2. When 02 003 =+= yx &α  and ( ) 0232sin 001 =−−= yx &β , there is no secular, in-

plane drift. This corresponds to the satellite being on the y-axis at perigee. 
 
3. With these constraints, the size of the relative motion orbit and the phase shift 

stay constant ( 01 =α& , 01 =β& ). 
 
Second-Order Averaging 
 

In second-order averaging, the effect of the fast terms that were averaged away 
in the first order analysis must be taken into account. Following the second-order 
averaging theorem in Sanders8, the following initial value problem is considered: 

 ( ) ( ) ( )εεεε ,,,, 32 xtRxtgxtfx ++=&  ,   ( ) 00 xx =                      (22) 
The corresponding averaged differential equation becomes: 

 ( ) ( ) ( )ugufufu ooo 212 εεε ++=&  ,   ( ) 00 xu =                      (23) 
where , and  represent the average values of , and .  of of 1 og f 1f g
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Fast variations of the first-order term in ε  affect the second-order long-term 
variations in  via , which can be computed from the following two equations: 2ε 1f

( ) ( ) ( ) ( )xfxtuxtuxtff o,,, 111 ∇−∇=  
( ) ( )( ) ( )xadxfxfu o +−= ∫ ττ ,1                                       (24) 

with a(x) a smooth vector field, this forces u1 to be zero on average. 
 

Applying the second-order averaging theory to the modified epicyclic elements, 
we obtain: 
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Analyzing the second-order equations, the following remarks can be made: 

 
1. The second-order eccentricity perturbation also does not lead to out-of-plane 

motion. 
 
2. Setting 133 ,, αα &&&Q  equal to zero gives us: 0||2 003 =+−= yx&Q  and two options 

for the other two equations. 
 

The first alternative is to set 03 =α  and ( ) 0232 1 =−sin −= yx &β . This is 
equivalent to the first-order solution, which means that initially, at the perigee, the 
follower is on the y-axis and .  2/00 yx =&

 
In the second alternative, ( ) 02 1cos == x&β  and 33α− ( )e11 2sin3 βα−  

( ) 0199
4
3 2

3 =+− eα . The first equation combined with the second condition means 

that, at the perigee, the satellite is on the x-axis. The second equation gives an 
approximation of the general period matching constraint, the semi-major axis being 
equal2, which can be approximated by the following equation9: 
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These alternatives yield the two extreme cases in the periodic in-plane solution 
of the C-W equation ( ( ) 2/sin otx ϕρ +=  , ( )oty ϕρ += cos   where oϕ  defines the 
initial angle between x and y ). The first alternative puts the satellite initially on the 
apoapsis, while the second alternative puts it on the periapsis (corresponding 
respectively to the grey and black points in Figure 3). 
 

oϕ

X 

1 unit  Y
 2 units 

 
Figure 3   C-W periodic relative in-plane motion ellipse 

 
Both alternatives have their advantages and disadvantages. If the follower is 

initially located on the apoapsis, then no drift in the y-direction occurs (to second order) 
and no correction is needed. However, the higher-order terms in the approximations of 

1α&  all include ( 12cos )β . This demonstrates that the size of the ellipse changes over time 
(see Figure 4).  
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Figure 4   Components of the relative distance for initial condition 0=oϕ , e=0.1. 

 
If the follower is located on the periapsis, a correction to the initial in-track 

velocity, , is needed. This sets oy& o3α  equal to a non-zero value (see Eq. (25)); leading 
the satellite to drift slowly with the along-track drift, thus moving the origin of the 
ellipse in time (see Figure 5).  
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C-W and Real Orbits for 1 Period -3x 10
3

Figure 5   Radial drift in the relative motion ellipse for 90=oϕ , e=0.1 with boundedness correction. 

 
For the initial conditions between the periapsis and the apoapsis, the intensity of 

these effects is lessened and they occur in combination. 
 
CONCLUSION 
 

A Hamiltonian approach to solve for the relative motion in an eccentric 
reference orbit has been applied. A new set of action-angle variables that define the 
physics of the motion have been found. Using Canonical Perturbation Theory, the 
evolution of the action-angle variables in time was found. Applying the second order 
averaging theory, the variations were orbit averaged and the periodicity and 
boundedness conditions were obtained. The comparison of the different initial 
conditions was done analytically and with simulations. 
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